
Seminar on L1 Adaptive Control: Theory & Applications Copenhagen, October 2013

L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

Roberto Galeazzi

Assist. Professor at DTU Electrical Engineering, Technical University of Denmark

Automation and Control Department of Electrical Engineering

9th IFAC Conference on Manoeuvring and Control of Marine Crafts Arenzano, Italy, 19 – 21 September 2012

L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

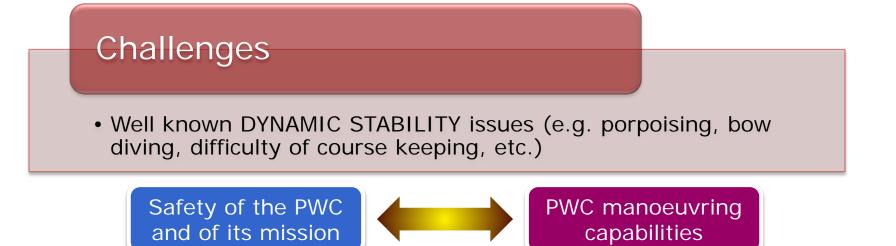
Casper H. Svendsen^{*} Niels Ole Holck^{*} **Roberto Galeazzi**^{*} Mogens Blanke^{*,**}

* DTU Electrical Engineering, Technical University of Denmark

** Centre for Ships and Ocean Structures, Norwegian University of Science and Technology

Automation and Control Department of Electrical Engineering

Presentation outline


Problem statement	 Motivation & challenges
Personal watercraft	\cdot The toy & its specs
Modeling	\cdot Model complexity & identification
L1 adaptive control	• Maneuvering
Performance assessment	\cdot Símulatíons & full scale valídatíon
Conclusions	• Remarks & research outlook

Problem statement

Motivation

- What about using high-speed personal watercrafts (PWCs) for coast patrolling, surveillance of installation areas, search & rescue missions?
- Operating the vehicle unmanned represents an opportunity in order to perform tasks safely and reliably however seaworthiness must be guaranteed across a large range of operational conditions

4 Automation and Control - DTU Electrical Engineering Technical University of Denmark L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

Challenges for maneuvering control

		3	-)
	Ľ	5	P	
,		20		
4	-		-	
		/		

Maneuvering

- Manoeuvring characteristics influenced by the vehicle's vertical dynamics
- Towing tank tests have shown that hydrodynamic forces/moments acting on a planing craft strongly depend on the running attitude (Ikeda, 2000)

which nonlinear models?

Low speed

Medium to high speed

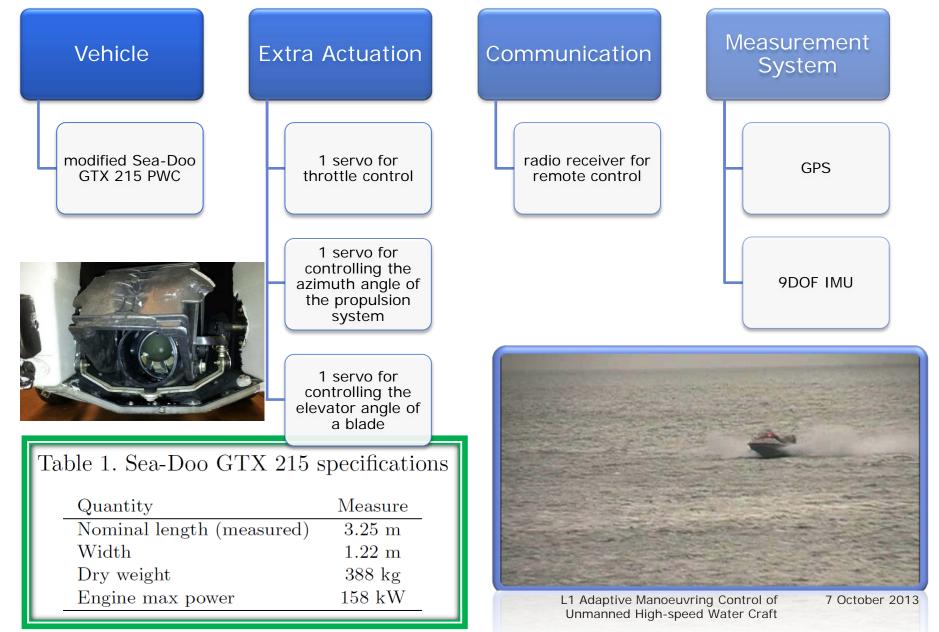
High speed + waves

Proposed solution

DTU

Control Objective: operate the high-speed PWC with equal performance across the craft's full envelope of operations

Modeling


- Model the manoeuvring characteristics through REDUCED COMPLEXITY MODELS (4DOF surge-sway-yaw-roll model / 1DOF yaw model)
- Identify the models through mixed black-box/grey-box identification exploiting **FULL SCALE MOTION DATA**

Control Design a ROBUST ADAPTIVE MANOEUVRING CONTROLLER capable of dealing with rapid and large

changes of the PWC dynamics

System setup

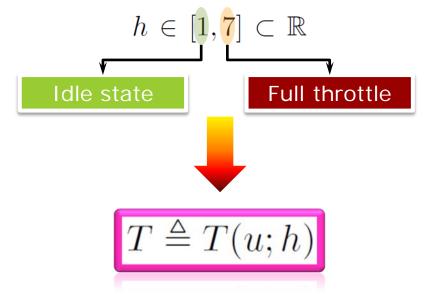
DTU

PWC maneuvering dynamics

 Maneuvering dynamics described by 4DOF surge-sway-yaw-roll model (according to Blanke & Christensen, 1993)

$$\begin{split} \boldsymbol{\eta} &= [x, y, \phi, \psi]^{\mathrm{T}} \in \mathbb{R}^{2} \times \mathcal{S}^{2} & \text{Generalized coordinates} \\ \boldsymbol{\nu} &= [u, v, p, r]^{\mathrm{T}} \in \mathbb{R}^{4} & \text{Generalized velocities} \\ \mathbf{r}_{g} &= [0, 0, z_{g}]^{\mathrm{T}} \in \mathbb{R}^{3} & \text{Position of CG} \end{split}$$

$$\mathbf{M}\dot{\boldsymbol{\nu}} + (\mathbf{C}(\boldsymbol{\nu}) + \mathbf{D}(\boldsymbol{\nu}))\boldsymbol{\nu} + \mathbf{g}(\boldsymbol{\eta}) = \boldsymbol{\tau}_c + \tau_e$$

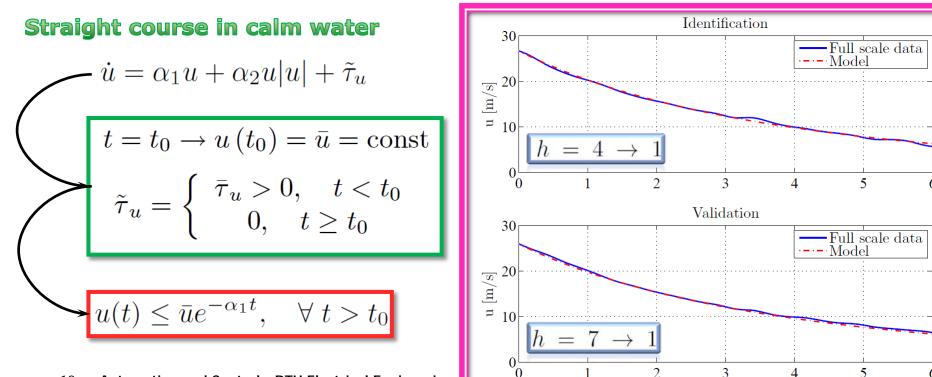

Identification performed using FULL SCALE MOTION DATA

$$\boldsymbol{\tau}_{e} = \mathbf{0}$$

$$\boldsymbol{\nu} = -\mathbf{M}^{-1} \left[(\mathbf{C}(\boldsymbol{\nu}) + \mathbf{D}(\boldsymbol{\nu}))\boldsymbol{\nu} + \mathbf{g}(\boldsymbol{\eta}) \right] + \mathbf{M}^{-1}\boldsymbol{\tau}_{c}$$

Surge dynamics identification (1/2) Surge Dynamics $(m - X_{\dot{u}}) \dot{u} - (X_u + X_{u|u|} |u|) u + (mz_g + Y_{\dot{p}}) pr - (m - Y_{\dot{v}}) vr + Y_{\dot{r}}r^2 = \tau_u$ $\tau_u = (1 - t)T(n, u_p)$

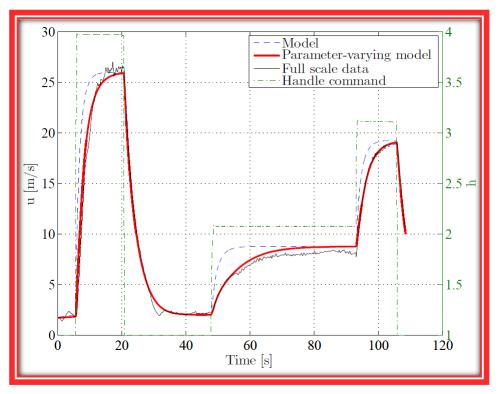
- $T(n, u_p)$ is not measured and there is no direct control of the shaft speed n
- Only the handle command h is available


9 Automation and Control - DTU Electrical Engineering Technical University of Denmark L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

Surge dynamics identification (2/2)

Identification

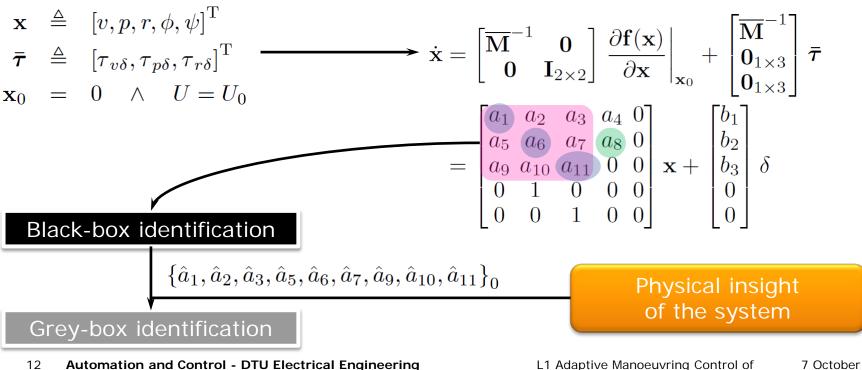
- Estimate advance resistance coefficients from surge data in response to steps in the handle command
- Determine steady state relations between T and u


Time [s]

Surge dynamics validation

- Against FULL SCALE MOTION DATA
- Four consecutive step changes in the handle command

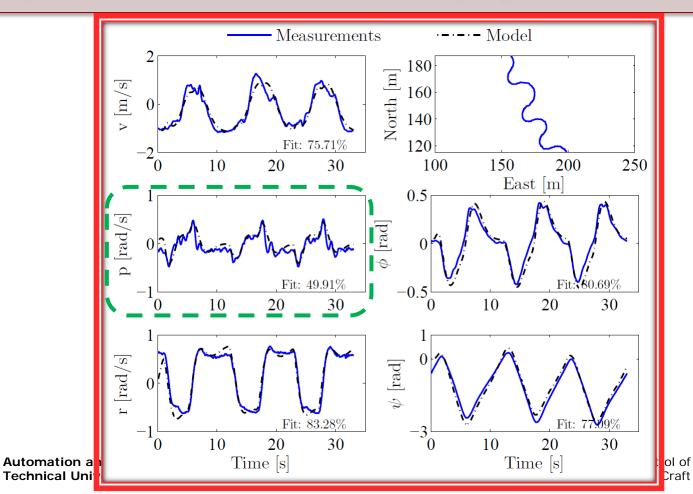
11 Automation and Control - DTU Electrical Engineering Technical University of Denmark $\dot{u} = \kappa(\alpha_1 u + \alpha_2 u |u| + \tilde{\tau}_u), \quad \kappa \in [0.2, 1]$


L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft 7 October 2013

Steering + roll dynamics identification

- Fitting a linearized 3DOF sway-roll-yaw model
- FULL SCALE DATA from circular tests and zig-zag tests

Technical University of Denmark


Steering + roll dynamics validation

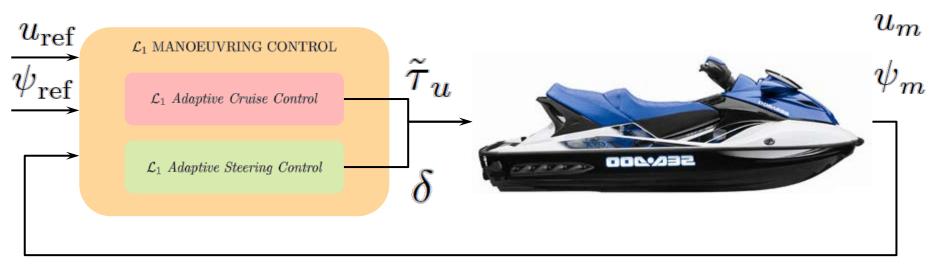
DTU

Validation

13

• Against FULL SCALE DATA of a 15-90 zig-zag test

7 October 2013


Adaptive manoeuvring control

Why an adaptive controller?

- Both surge and steering appear to be dependent on the running attitude
- Forward speed has a substantial influence on the steering characteristics
- Surge dynamics shows different behaviors during positive and negative accelerations
- Constraining the modeling of the steering dynamics on the horizontal plane naturally exclude the effect of the vertical motions which are known to be relevant for planing crafts (Ikeda, 2000)

L1 adaptive manoeuvring control

 \mathcal{L}_1 Adaptive Cruise Control

Surge Dynamics

$$\dot{u} = A_{m,u}u + (\omega_u \tilde{\tau}_u + g(t, u) + \sigma_u) \rightarrow y_1 = u$$

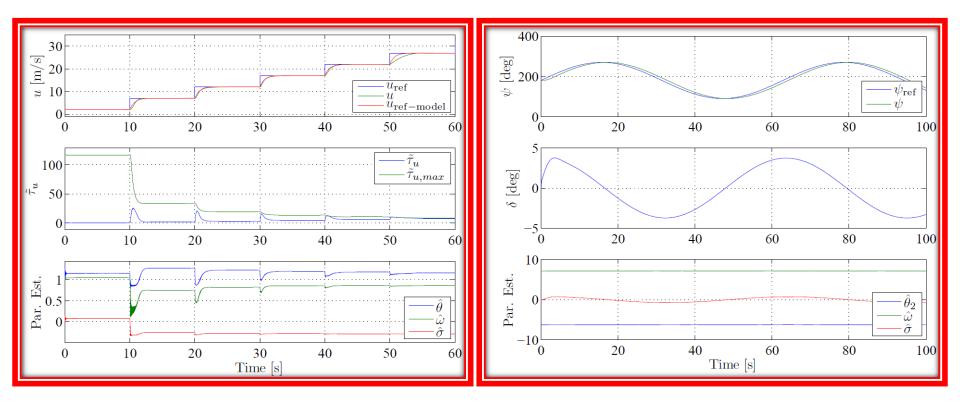
 $A_{m,u} = \alpha_{des} \in \mathbb{R}^{-}$ $\omega_{u} = \kappa(t) \in R^{+}$ $\sigma_{u} = \alpha_{3}(t)vr$

State Predictor

$$\dot{\hat{u}} = A_{m,u}\hat{u} + \left(\hat{\omega}_u\tilde{\tau}_u + \hat{\theta}_u \|u\|_{\infty} + \hat{\sigma}_u\right), \ \hat{u} = u_0$$
$$\dot{\hat{y}}_1 = \hat{u}$$

DTU

₩

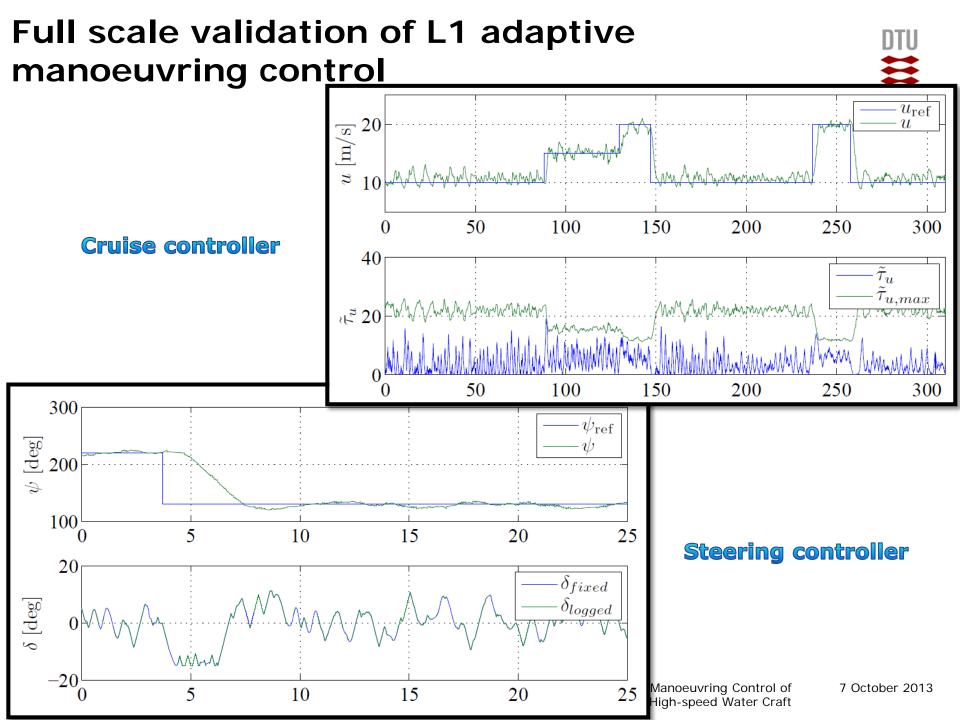

Parameter Estimator

$$\dot{\hat{\theta}}_{u} = \Gamma_{u} \operatorname{Proj} \left(\hat{\theta}_{u}, -\tilde{u}P_{u} \|u\|_{\infty} \right), \ \hat{\theta}_{u}(0) = \hat{\theta}_{u,0}$$
$$\dot{\hat{\sigma}}_{u} = \Gamma_{u} \operatorname{Proj} \left(\hat{\sigma}_{u}, -\tilde{u}P_{u} \right), \ \hat{\sigma}_{u}(0) = \hat{\sigma}_{u,0}$$
$$\dot{\hat{\omega}}_{u} = \Gamma_{u} \operatorname{Proj} \left(\hat{\omega}_{u}, -\tilde{u}P_{u}\tilde{\tau}_{u} \right), \ \hat{\omega}_{u}(0) = \hat{\omega}_{u,0}$$
$$Control Law$$
$$\tilde{\tau}_{u}(s) = -k_{u}D_{u}(s) \left(\hat{\eta}_{u}(s) - k_{q,u}u_{ref}(s) \right)$$

DTU

Cruise controller

Steering controller



Full scale validation of L1 adaptive manoeuvring control

17 Automation and Control - DTU Electrical Engineering Technical University of Denmark L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft 7 October 2013

Conclusions

Identification

- 4DOF surge-sway-yaw-roll model has been identified for the high-speed PWC based on FULL SCALE MOTION DATA
- Clear dependence of the maneuvering characteristics on the running attitude

Control Design

- •L1 adaptive maneuvering autopilot has been designed in order to have uniform performances across the entire operational range of the vehicle
- Design split into an adaptive cruise controller and an adaptive steering controller

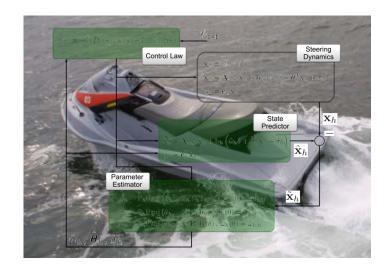
Validation

• Simulations and full scale closed loop tests shows convincing performance of the L1 adaptive maneuvering controller and of the L1 augmented station keeping (heading) controller

Detailed results can/will be found in the following publications:

- Svendsen, C. H., Holck, N. O., Galeazzi, R., Blanke, M. "L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft" in Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Crafts, 2012 (Best Paper Award)
- Galeazzi, R. Holck, N. O., Svendsen, C. H., Blanke, M. "Full Scale Validation of L1 Adaptive Autopilot of Unmanned High-speed Water Craft", to be submitted (as soon as possible)
- Svendsen, C. H., Holck, N. O. "L1 Adaptive Control of Waterjet Vehicle", MSc Thesis, Technical University of Denmark, 2012

Seminar on L1 Adaptive Control: Theory & Applications Copenhagen, October 2013



L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

Roberto Galeazzi

Assist. Professor at DTU Electrical Engineering, Technical University of Denmark

Automation and Control Department of Electrical Engineering

